

Gefördert durch

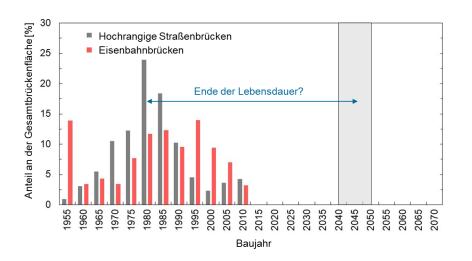
Bundesministerium Innovation, Mobilität und Infrastruktur

Projekt gefördert im Rahmen des FTI-Schwerpunkts Mobilitätswende durch das Bundesministerium für Innovation, Mobilität und Infrastruktur

FFG-Projektnummer: FO999926577, Ausschreibung: Mobilitätswende 2024/2 – Mobilitätssystem

https://projekte.ffg.at/projekt/5137690

Vorausschauende Wartung von Verkehrsinfrastruktur Vernetzungsworkshop, 3.11.2025



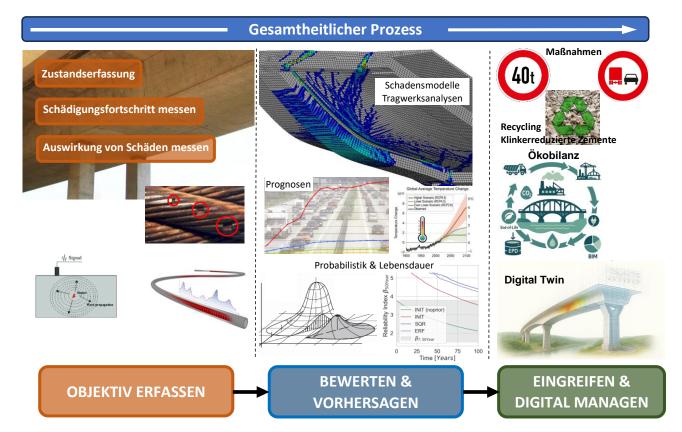
PROBLEMSTELLUNG

Hohe Anzahl von Brücken erreicht in den nächsten 20 Jahren ihre übliche Lebensdauer Handlungsbedarf vor allem bei Spannbetonbrücken - korrosionsanfällige Spannglieder sind visuell nicht inspizierbar

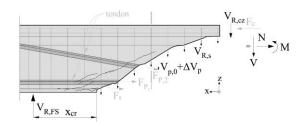
Hauptziele:

- Bestehende Brücken länger und sicher in Betrieb halten
- Nachhaltigkeit bewerten und erhöhen

Carolabrücke, Dresden



METHODIK


ENTWICKLUNGEN

Erfassung von Schädigungsprozessen

- Weiterentwicklung der Schallemissionsanalyse, sowie Entwicklung neuer Messmethoden zur Detektion von Spanndrahtbrüchen bei Spannbetonbrücken durch Kombination mehrerer faseroptischer Messverfahren
- Entwicklung von einem neuen Riss-vor-Bruchkriterium und einem Drahtbruchlückenbreitenmodell, welche mit aktuellen Sicherheitskonzepten kompatibel sind
- Erweiterung der Datenbasis zum Ermüdungsverhalten vom Recyclingbeton

Zuverlässigkeits- und Lebensdauerbewertung von Brücken

- Verfahren zur Ableitung verkehrsdatenbasierter ortsspezifischer Brückenverkehrslasten mit reduzierter Streuung
- Methode zur Bestimmung ortsspezifischer Temperaturlasten auf Brücken, die lokales Wetter und Klimaprognosen berücksichtigen
- Quantifizierung der Zuverlässigkeit und Lebensdauer von Brücken unter Einbezug von Messdaten und ortsspezifischen Lastmodellen

Bewertung der Nachhaltigkeitsauswirkungen

- Analyse der Auswirkung von verschiedenen Maßnahmen auf das Global Warming Potential (GWP)
- Quantifizierung der GWP-Reduktion durch den Einsatz von Recyclingbeton und klinkerreduzierten Zementen bei Neubau und Verstärkung von Brücken

PROJEKTPARTNER

Lastmodelle, Prognosen, Ökobilanzierung

Anwendung faseroptische Messungen

Schalemissionsanalyse zur Drahtbruchdetektion

Messmethoden und Zustandsbeurteilung

Bautechnik, Vorspanntechnik

Distributed Acoustic & Strain Sensing zur Drahtbruchdetektion

Bewertung der Tragfähigkeit und Ermüdung; Laborversuche

Kontakt:

marian.ralbovsky@ait.ac.at

+43 664 8157964